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Abstract

We propose a novel approach for the detection of temporally impulsive dirt impairments in archived film sequences. Our

method does not require motion compensation and uses raw differences between the current frame and each of the

previous and next frames to extract a confidence signal which is used to localize and label dirt regions. A key feature of our

method is the removal of false alarms by local region-growing. Unlike other work utilizing manually added dirt

impairments, we test our method on real film sequences with objective ground truth obtained by infrared scanning. With

confidence information extracted from color channels, dirt areas of low contrast to the corresponding gray image can be

successfully detected by our method when motion-based methods fail. Comparisons with established algorithms

demonstrate that our method offers more efficient, robust and accurate dirt detection with fewer false alarms for a wide

range of test material.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The automatic restoration of historic films is
emerging as a key enabling technology towards
improving access to cultural assets of unique value.
By improving baseline picture quality and by
reducing the perceptual impact of archive-related
impairments film archive restoration can meet
viewers’ aesthetic expectations and enrich the view-
ing experience. Moreover, the suppression of such
impairments has vital implications on the efficiency
of video coding algorithms used in the television
and multimedia distribution chains such as MPEG-
2. Consequently, film restoration has recently
attracted a lot of interest and several high-profile
collaborative projects have received generous fund-
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storage and handling practices and even poorly
maintained projectors [1–7]. In this paper, we focus
on the detection of impairments occasionally
referred to ‘dirt’. Generally, dirt is a temporally
impulsive (single-frame) event, appearing mostly as
dark or bright opaque spots of random size, shape
and location (see Fig. 1). It is due to particles that
are attached to the film or abrasions which occurred
during storage or when the film passed through
various transport mechanisms [1,4]. These are
among the most commonly encountered impair-
ments and consequently their successful detection is
a priority issue in any archive restoration system.

In this paper, we propose a novel automatic
method for dirt detection based on local region-
growing. Firstly, a confidence measure is defined
and attached to detected dirt areas. This allows a
variable degree of treatment according to the
preference and supports fine tuning under various
confidence levels. Secondly, using this confidence
measure, candidate dirt regions are localized using a
local region-growing process. With confidence
information extracted from all three color compo-
nents, dirt areas of low contrast in the luminance
channel can be efficiently detected. It should be
noted that in such cases motion-based methods are
known to fail. Thirdly, for the first time in this type
of study objective ground truth (GT) of dirt is used
Fig. 1. Examples of dirt (marked within white boxes). (a) Static text, (b)

(d) fast-motion natural scene.
for performance assessment of real film material.
Among other things this allows the computation of
Receiver Operating Characteristic (ROC) type of
curves. Finally, a key element of our method is that
it does not require the use of motion estimation and
motion-compensated prediction. This reduces its
complexity considerably and makes it a good
candidate for fast implementations.

This paper is organized as follows. In Section 2,
we review related work featuring in the literature
while in Section 3 we describe the extraction of a
confidence measure for dirt detection. In Section 4,
we present the proposed dirt detection algorithm
while in Section 5 we provide experimental
evidence including a comparative assessment with
other methods. Finally, conclusions are drawn in
Section 6.

2. Literature review

Storey’s work [8] was perhaps the earliest
contribution to the electronic detection and con-
cealment of film dirt in the context of a hardware-
based system that was proposed. A pixel was
flagged as dirt if the corresponding absolute
differences between the current frame and each of
the previous and next frames were high. As motion-
compensated prediction requires a high degree of
low-motion natural scene, (c) moderate-motion natural scene and
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complexity and can be unreliable when motion
estimation fails, many spatial filtering techniques
for dirt detection have also been proposed as
alternatives. Existing methods and models with or
without motion compensation are discussed below.
2.1. Dirt detection with motion compensation

Complementary to bi-directional motion com-
pensation, temporal median filtering is a common
approach in dirt detection using the current frame
and its two motion-compensated neighbors
[2,3,9–11]. In Schallauer et al. [2], a pixel is taken
as dirt and filtered if both its absolute differences
between current frame and the two compensated
images exceed a first (higher) threshold while at the
same time the absolute difference between the two
compensated images is less than a second (lower)
threshold, thus we can denote it as a double-
threshold method (DTM). Kokaram [3] proposed a
so-called ‘Spike Detection Index’ (SDI) which is
based on the identification of high absolute differ-
ences between the current frame and two motion-
compensated images. The extended SDI method,
SDIp, additionally requires sign consensus of the
two differences above. Nadenau and Mitra [9], have
proposed the rank order detector (ROD), in which a
total of seven pixels from three consecutive frames
are compared against three thresholds. Gangal et al.
[10] extended ROD to five frames to improve
accuracy in heavily corrupted images or occluded
blotches. Tenze et al. [11] adopted adaptive block
matching in spatial–temporal filtering for blotch
detection, but their method can only work effi-
ciently when motion is slow.

Let fn be the current frame and let the two
motion-compensated neighboring frames be Cn�

and Cn+. We define Dn� and Dn+ as the differences
between each of these two images and the current
frame, i.e., Dn� ¼ fn�Cn and Dn+ ¼ fn�Cn. Using
the above dirt detection according to DTM, SDI
and SDIp methods are summarized below. In (1),
we have t24t1, and normally DSDIp is more accurate
than DSDI [3].

DDTM ¼
1 if jDn�j4t2; jDnþj4t2; jCn� � Cnþjot1;

0 otherwise;

�
(1)

DSDI ¼
1 if jDn�j4t2; jDnþj4t2;

0 otherwise;

(
(2)
DSDIp ¼
1 if jDn�j4t2; jDnþj4t2;Dn�Dnþ40;

0 otherwise:

�
(3)

To determine dirt in ROD, three pair of pixels are
extracted from Cn� and Cn+ in three rows, i.e.,
(i�1, j), (i, j) and (i+1, j). These six pixels are sorted
in increasing order in a list [r1, r2,y,r6] where r6 is
the maximum. Then the median of the list is
extracted as med ¼ (r3+r4)/2. Three thresholds,
tkA[1,3], are then taken to determine the dirt as
follows:

DROD ¼
1 if _ ðekXtkÞ ¼ true; where t1ot2ot3;

0 otherwise;

�
(4)

ek ¼
f nði; jÞ � r7�k; if f nði; jÞ4med;

rk � f nði; jÞ; otherwise:

(
(5)

Moreover, we can also find many statistical
approaches in dirt detection, using auto-regressive
(AR) and Markov random field (MRF) models
[12–20]. Unfortunately, there are no definitive
statistical models for material of this kind and
consequently such methods will fail if their assump-
tions cannot be satisfied or if accurate and robust
motion compensation cannot be achieved [14,15].

2.2. Dirt detection without motion compensation

Considering film dirt as impulsive type of noise in
the spatial domain, it can be detected and recovered
via filtering without motion compensation. In
general, median and morphological filtering is
widely used [21–27]. Subsequently, dirt detection is
based on the identification of high difference values
between the current frame and the filter output. In
[21], Alp et al. introduced a ML3D filter for noise
removal in image sequences, which utilized two-
stage median filtering in three sub-windows. Kokar-
am [3] extended ML3D to five sub-windows and
proposed the so-called ML3Dex filtering approach
with which satisfactory results have been reported
[4]. Hardie and Boncelet [24] proposed lower-upper-
middle (LUM) filters which utilized two parameters
for adjustable smoothing and sharpening of images.
However, this method did not perform well in the
presence of fast-moving objects. Nieminen et al. [25]
presented a multi-stage median filter (MMF), which
uses hierarchical median operations to reject sparkle
type of impairments. Senel et al. [26] proposed a
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topological median filter to extract edges in noise;
however, the filtered images are of unacceptable
visual quality in most cases. In Arce [27], MMF
filters have further evolved as multi-stage order
statistic filters (MOS). Hamid et al. [4] proposed soft
morphological filtering (SMF) and used a genetic
algorithm to determine the size and shape in the
filters. Nevertheless, SMF seems impractical for
most applications because it needs a sufficient
number of representative dirt samples for training
purposes in order to optimize the filters.

In standard median filtering (SMF) and LUM
filtering, a window W of radius r is defined for each
pixel (i, j) in the current frame fn as

W i; j; rð Þ ¼ f i1; j1
� �� �

; ji1 � ijpr; jj1 � jjpr.

(6)

Hence the total number of pixels in W is
N ¼ (2r+1)2. We denote W ¼ {x1, x2, y, xN},
and the rank-ordered set is given by

xð1Þpxð2Þp � � �pxðNÞ. (7)

The central pixel in the original current frame and
filtered image are denoted as x0 and y0, respectively.
In SMF, we simply have y0 ¼ xðN0Þ, where
N0 ¼ (N+1)/2.

In LUM, two parameters, k and l, are introduced
for smoothing and sharpening, respectively. Typi-
cally it holds that 1pkplpN0. Then, the filtered
output is defined as

y0 ¼
xL; if x0pðxL þ xUÞ=2;

xU; otherwise;

(
(8)

where xL and xU are the corresponding outputs of
the smoothing and sharpening processes g4 1n by

xL ¼ median xðkÞ;x
0;xðlÞ

� �
, (9)

xU ¼ median xðN�kþ1Þ; x
0;xðN�lþ1Þ

� �
. (10)

In Arce [27], LUM was further applied to a
3� 3� 3 spatial–temporal window, which can be
enoted as LUM 0(N,k), where we have N ¼ 27 and
kp14. The output of the filter is g4 1n by

y0 ¼ medianðxðkÞ;x
0;xðN�kþ1ÞÞ. (11)

Regarding ML3D and ML3Dex filtering, six sub-
windows in three consecutive frames are defined as
shown in Fig. 2. Let zl be the median value of all the
pixels in Wl, then the output of the two filters can be
g4 1n by

y0ML3D ¼ medianðz0; z5; z6Þ, (12)

y0ML3Dex ¼ medianðz5; z6; z7z
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value when an idealized dirt impulse occurs against
a constant background i.e. when dn� ¼ dn+. If both
dn� and dn+ are negative or positive, this relates
respectively to dark or bright dirt pixels. Eq. (15)
reflects the fact that dirt is strictly a temporally
impulsive event thus dirt pixels are expected to
generate consistent differences between the current
frame and its two neighboring frames. There are
instances where the luminance difference between a
dirt cluster on the one hand and its neighborhood
on the other is low. However, individual color
component differences for the same cluster may be
significantly higher, such as non-gray dirt [29].
Typically one of the color components will exhibit
such a characteristic. The purpose of the max
operator in (14) and the combined effect of (14)
and (15) are aiming at the exploitation of this
characteristic.

For each value m in dn, its associated dirt
probability is defined in (16), where pd is the
intensity probability density function (pdf) of dn,
parameter L is the number of intensities, and
pn(m) ¼ 0 when mom0.

pnðmÞ ¼

Pm
x¼m0

pdðxÞPL�1
x¼m0

pdðxÞ
. (16)

In the presence of a static background in three
consecutive frames, there will potentially be a
substantial number of locations in dn with near-
Fig. 3. Extracted confiden
zero values. Parameter m0 controls the influence of
this static background and avoids assignment of
high confidence to these near-zero values. Let m, g
and s be the mean, median and standard deviation
of the distribution of values in dn, and m0 is
determined by m0 ¼ 0.5(m+g)+s.

Then, we can define a confidence image Conf as

Confði; jÞ ¼ ðL� 1ÞpnðmÞ; m ¼ dnði; jÞ. (17)

If m0 ¼ 0, Conf is equivalent to the histogram
equalization of dn. However, the straightforward
histogram equalization is not useful in this context
due to the static background. Fig. 3 shows examples
of four confidence images extracted for the original
images in Fig. 1. In Fig. 3, we can see that dirt pixels
appear very bright in the confidence images, which
means that they are correctly assigned a high
confidence value. On the other hand, there remain
some false alarms mainly due to motion and moving
edges.

For gray-level images, h(fn, fn�1) ¼ fn�fn�1, and
dn� and dn+ are forward and backward frame
differences. In principle we can convert color images
to gray ones for the extraction of confidence images.
However, this fails to detect dirt locations of higher
difference between color components but lower
difference between intensity levels. In addition, dn

extracted from h( � ) has a larger dynamic range than
the equivalent signal obtained by considering
ce images for Fig. 1.
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exclusively monochrome information. This has the
effect of further emphasizing dirt areas and sup-
pressing false alarms when dn is normalized as in
(16). Fig. 4 shows one color image and its
corresponding luminance component as well as the
two corresponding confidence images. Comparing
Fig. 4(c) and (d) we can see that the confidence
image obtained using h( � ) is (1) more accurate,
especially in places where dirt has similar intensity
to the background and (2) more robust owing to the
suppression of false alarms.
4. Confidence-based dirt detection using local region-

growing

We assume that the higher the intensity of the
confidence image the higher the likelihood of a dirt
particle being present. This allows us to subse-
Fig. 4. Comparisons of confidence images extracted from luminance-o

rectangles. (a), and (b) Color and gray image of frame ]14. (c) and (d)
quently localize regions of dirt via thresholding.
Assuming Conf is a confidence image extracted as
described in Section 3, we can obtain a binary mask
B0 as

B0ði; jÞ ¼
1 if Confði; jÞXTm;

0 otherwise;

(
(18)

where Tm is a threshold. This is proportional to a
given confidence level C and determined as (L�1)C.
In general, a larger threshold is used when there are
fewer false alarms in the confidence image, and vice
versa. However, to obtain an entire dirt cluster in B0

this confidence level should not be too high, i.e.,
o90%. After thresholding, dirt will appear as
region islands in the binary mask B0 which can
subsequently be labeled and further processed with
the intention to detect and remove false alarms.
nly and color components, with sample dirt areas shown inside

Extracted confidence images.
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Prior to this taking place we ignore all tiny regions
of size less than a given threshold, i.e., 3 pixels.

In general, it is occlusions caused by motion
which primarily lead to false alarms in the extracted
confidence images. This can be easily verified by
comparing the confidence image with original
frames. The key principle used towards preventing
false alarms (that would have otherwise resulted
from using the confidence images) is local similarity.
More specifically, it is expected that, on the average,
false-alarm pixel locations and their neighbors
should be strongly correlated i.e. due to intensity
continuity in natural scenes. The opposite would be
true for pixel locations occupied by genuine dirt for
obvious reasons. At locations where abrupt inten-
sity variations occur this assumption will no longer
be valid but on the average this is less likely to
occur. Local region-growing is therefore employed
to exploit this similarity assumption and shape our
false alarm detection strategy. It is worth re-
iterating that local region-growing is more efficient
than global region-growing and has a lower
computational complexity.

Region-growing is a well-established image pro-
cessing concept which has been used for various
tasks in image analysis (see for example [30]) and
typically requires a similarity criterion which con-
trols the merging of adjacent pixels to form a
connected set or region. For our purposes, having
identified labeled regions rk as above, on the original
frame fn we compute the corresponding mean and
standard deviation vectors per color component as
mk ¼ ðm

ðrÞ
k mðgÞk mðbÞk Þ and sk ¼ ðs

ðrÞ
k sðgÞk sðbÞk Þ, respec-

tively. We then define a similarity criterion as

c
ðnÞ
i;j � mðcÞk

��� ���pTss
ðcÞ
k (19)

where c
ðnÞ
i;j is the intensity value of adjacent pixels

(i,j) in image fn, c ¼ r,g,b. Parameter Ts is to control
the merging of pixels and in our experiments we
have used Ts ¼ 1.5. It is interesting to note that this
local region growing will generate similar results to
the work in [23], in which morphological opening
and closing are utilized. However, our method is
more efficient and avoids substantial false alarms
caused by the global nature of application of these
operators.

Let nk be the number of pixels in fn which are
adjacent to rk. In (19) we assume that n0k pixels will
be merged into rk, where n0kpnk. Next, we identify
rk as a false alarm if it holds true that n0k4nk=Ts,
where Ts is another threshold satisfying 1oTso3. If
there are false alarms caused by less abrupt edges in
an image, a larger Ts will be required. Otherwise, a
smaller Ts is more suitable for accurate detection.

After the elimination of all false-alarm regions
identified as above we obtain a new mask image, B,
which is a subset of B0. For visualization purposes,
we overlay confidence values to each pixel of B, to
generate a gray-level output image, Confd. Fig. 5
shows detected dirt with attached confidence based
on Fig. 3, and Fig. 6 illustrates detected dirt for
Fig. 4(a) using the confidence images in Fig. 4(c)
and (d), respectively, with Tm ¼ 155, Ts ¼ 2.3.

5. Experimental results

5.1. Objective ground truth and visual assessment

It is usual practice to assess performance using
artificially added dirt such as in the work reported in
[1,6] and [17]. In contrast, we are presenting results
obtained by using GT dirt maps made available
from Institut National de L’ Audiovisuel (INA),
Paris. As already mentioned such maps are obtained
by using special infrared-film scanners and typically
show dirt as darker areas set against a lighter
background. Scratches are also present in those
maps as mid-gray features owing to their partial
transparency. We have used broadcast resolution
(760� 560) sequence ‘Lady and doll’ which, among
other features, contains a fair amount of camera
shake, local motion and partially textured back-
ground. In order to focus on dirt evaluation, the
intensity of original GT is thresholded to obtain a
binary GT dirt mask. For the source image in
Fig. 4(a), the corresponding GT data in gray-level
(original) and binary (thresholded) format are
illustrated in Fig. 7(a) and (b), respectively.

Comparing Fig. 7(b) with Fig. 4(c) we can see
that the extracted confidence is very consistent with
the GT information. If we compare the detection
results using our method (see Fig. 6) with those
from SDIp, ROD, LUM and ML3Dex (see Fig.
7(c)–(f)) we can clearly see that our method is more
accurate with fewer false alarms.

It should be noted that for the implementation of
SDIp and ROD we used the well-known Black–
Anandan optical flow algorithm to obtain dense
motion fields of sub-pixel accuracy [31] for motion-
compensation purposes. Since motion estimation is
normally implemented on the luminance channel
only, these motion-compensated methods like SDIp
and ROD will fail in detecting dirt areas of low



ARTICLE IN PRESS

Fig. 6. Detected dirt with overlaid confidence for Fig. 5(a) using confidence from Fig. 5(c) (left) and Fig. 5(d) (right), respectively.

Fig. 5. Detected dirt with overlaid confidence for Fig. 1 using the confidence image in Fig. 4.

J. Ren, T. Vlachos / Signal Processing 87 (2007) 541–551548
contrast in the corresponding luminance compo-
nent, such as block C in Fig. 4(a), despite the fact
that such dirt is fairly visible in the GT data in
Fig. 7(a) and (b).

In addition, it is worth noting that our approach
can successfully detect dirt impairments of large
size, provided that the corresponding dirt area is
represented by a high value in the extracted
confidence image. In our method, each dirt region
is identified via local region growing without any
size restrictions being inherently imposed. Fig. 8
shows two examples of large impairments with
source images, ground truth and detection results.
The largest regions of dirt in the two images are
48� 71 and 50� 33 pixels, respectively. From the
results we can see that they have been successfully
detected by our method.

5.2. Quantitative assessment

We present a quantitative performance assess-
ment using the available GT which has been utilized
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Fig. 7. Comparisons of GT and detected dirt for the image Fig. 5(a). (a) Gray-level GT map of dirt, (b) binary GT of dirt at

threshold ¼ 80, (c) detected dirt using SDIp with t2 ¼ 10, (d) detected dirt using ROD, t1 ¼ 3, t2 ¼ 6, t2 ¼ 10, (e) detected dirt using LUM

(27,9) with ts ¼ 10 and (f) detected dirt using ML3Dex with ts ¼ 10.

Fig. 8. Two examples of large impairments. (a) and (d) Two original images from frame ]7 and frame ]11. (b) and (e) Corresponding

binary GT masks at threshold ¼ 95. (c) and (f) Detected dirt using our method.

J. Ren, T. Vlachos / Signal Processing 87 (2007) 541–551 549
towards the computation of ROC type of curves
[32]. It should be noted that this is the first time that
a ROC-based evaluation has been used in such a
context.

Let Dg be the binary GT mask of dirt and Dx be a
dirt mask detected from any given method, we
define the true positive rate Rtp and false positive
rate Rfp by

Rtp ¼
CountðDx �DgÞ

CountðDgÞ
, (20)
Rf p ¼
CountðDx � D̄gÞ

CountðD̄gÞ
, (21)

where Count is a function counting the non-zero
elements in a mask and operator � is the logical
AND between the two masks. Besides, D̄g is the
complement of Dg.

ROC curves are plots of Rtp versus Rfp. The
points required to determine ROC curves are
obtained by varying threshold values i.e., t1, t2, t3,
or ts. Typically, this would be the threshold that
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determines whether the difference between the
current frame on one hand and a motion-compen-
sated or spatially filtered frame on the other are
significant or not. If there are more than one
threshold utilized in a particular method (i.e., such
as ROD) we first adjust the smallest one and allow
the others to change proportionally to it i.e., we take
t1 as the principle value and allow t2 and t3 to vary
proportionally to t1 yielding t1ot2ot3. In our
method ROC curves are similarly obtained by
thresholding the gray-level output of the detector
using progressively increasing confidence levels.

We applied our algorithm to the entire test
sequence consisting of 286 frames. All the GT data
were thresholded at level 95 to obtain binary masks
of dirt. Fig. 9 shows global ROC performance
comparing our method (denoted as ‘Local Seg’)
with SDIp, ROD, LUM, and ML3Dex. These ROC
curves were obtained by considering the sequence as
a single data set in obtaining the corresponding
measurements of true positive rate and false positive
rate. From Fig. 9 we can see that our method offers
the highest performance levels when the true
positive rate is larger than 0.6. Spatial filtering
methods like LUM and ML3Dex consistently
generate the worst results. Less false positive rates
may be obtained by SDIp and ROD owing to the
suppression of false alarms by motion-compensated
processing. However, these methods still produce
fairly low true positive rates, especially for dirt
locations of similar luminance intensity but different
color relative to the background.

5.3. Computational complexity

We assessed all competing methods under con-
sideration in terms of computational complexity.
1
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Fig. 9. Global ROC curves from SDIp, ROD, LUM, ML3Dex,

and our algorithm (Local Seg).
On our processing engine (Pentium 4, CPU
3.2GHz, RAM 1GB), average times to process
one frame of the ‘Lady and doll’ sequence were
53.8 s and 6.2 s, respectively, for motion-compen-
sated filtering (including SDIp and ROD) and non-
motion-compensated filtering (like LUM and
ML3Dex) compared to 0.06 s for our method. It
should be noted that for temporal median filtering,
more than 99% of the computing time is spent
towards bi-directional motion estimation. The
above suggests that our method is nearly 1000 times
faster than competing methods using motion
estimation and compensation.

6. Conclusions

We have presented a dirt detection method for
archived color film sequences using a combination
of confidence extraction and local region-growing.
One of the most attractive features of our scheme is
that a confidence measure is attached to a detected
region which supports fine tuning in both automatic
and semi-automatic concealment of dirt. Another
key feature of our method is its low computational
complexity mainly owing to the fact that it does not
rely on the use of motion estimation and motion-
compensated prediction. We have shown that local
region-growing is effective towards reducing false
alarms caused by moving edges and we have
demonstrated that the proposed method outper-
forms well-established methods including SDIp,
ROD, LUM, and ML3Dex in terms of ROC
performance as well as visually.
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